
A comparison between ARC and gLite for
medical image processing on Grids

Tristan Glatard1, Xin Zhou2, Sorina Camarasu–Pop1, Oxana Smirnova4 and
Henning Müller2,3

August 5, 2009

1 Creatis–LRMN, University of Lyon, France
2Medical Informatics, University of Geneva, Switzerland

3University of Applied Sciences Western Switzerland, Sierre, Switzerland
4NDGF and Institute of Physics, Lund University, Sweden

Abstract

Medical imaging tasks often require large amounts of computing power or they could be improved if
more computing power were available. Many medical institutions do not have any dedicated computing
infrastructure for research and a way to cope with this is theuse of computational Grids. These Grids can
be used internally if the data can not leave the hospital network or from external infrastructure providers.
Choosing/maintaining a Grid infrastructure can be a tedious tasks for researchers, as well as adapting
existing applications for parallel computation on the Grid. Based on medical imaging use-cases, this
article compares two widely-used middleware solutions, namely gLite and ARC (Advanced Resource
Connector). Interoperability is enabled at the application level and the resulting setup is demonstrated
on two use–cases combining resources from both Grids. In addition, experimental results show a simple
performance comparison of data transfers and job submissions.

1 Introduction

Medical imaging is an essential part of medical diagnosis and treatment planning but processing large
amounts of medical imaging data can be computationally veryexpensive. Only few medical institutions
currently have large-scale computing infrastructures destined for imaging research, which led to the use of
computational Grids in the medical imaging field [3, 15]. A variety of Grid middleware projects have been
conducted over the past 20 years, from Condor [11], to Globus [6], gLite [7], and ARC (Advanced Resource
Connector) [5]. For a researcher not familiar with computational Grids itis difficult to choose a particu-
lar middleware among the available solutions and most oftenthe available resources determine this choice.
Middleware comparisons, in particular for a concrete task (in this case medical imaging) are rare.

On the other hand, there are many ongoing efforts currently targeting middleware interoperability, so jobs
can be exchanged, potentially easing the development of applications [20]. Regarding interoperability,
problems range from very low middleware layers (e.g. interoperability among batch queues to build Grids)
to higher levels (interoperability among Computing Elements to federate Grids [10]). At the application–
level, there are also several motivations for interoperability:



2

• Sharing of applications to limit the Grid porting effort. Applications ported to a particular Grid plat-
form can be run on another. In particular, this can be useful for widely adopted software tools.

• Sharing of data to enhance the accuracy of applications requiring large amounts of data for really
meaningful results (e.g. content–based image retrieval [14]).

• Sharing of resources without an additional maintenance cost (e.g. to access very specific resources
such as large clusters or clusters of Graphical Processing Units (GPUs)).

This article presents our early attempts towards application–level interoperability between ARC and gLite.
Our goal is to provide a qualitative comparison for medical imaging applications. Experiments reported
here are run from execution environments aiming at facilitating Grid access to non–expert users, i.e. med-
ical image analysis researchers. Two specific environmentsare targeted, one being deployed at the HUG
(University Hospitals of Geneva1) to interface with an ARC–enabled Grid resource and the other being de-
ployed at CREATIS–LRMN (Centre de REcherche et d’Applications en Traitement de l’Image et du Signal
— Laboratoire de Résonance Magnétique Nucléaire)2 to give access to the EGEE Grid running gLite. In
addition to the facilities provided by ARC and gLite, both execution environments include a workflow man-
ager for application porting and an application–level job submitter. Execution environments and methods
for application–level interoperability are first presented in section2. Experiments for data–sharing and job
submission are then reported in section3.

2 Methods

One group (HUG) targeted data sharing and attempted to use data stored on EGEE from ARC resources
in a content–based image retrieval (CBIR) application. A second group (CREATIS–LRMN) targeted re-
source sharing and attempted to run with ARC a radiotherapy simulation application originally ported to
a gLite–based environment. This section first presents the two execution environments in2.1. Setups for
interoperability are then detailed in2.2(for data) and2.3(for jobs).

2.1 Execution environments

Both execution environments are mainly composed of a workflow (WF) description tool and a workflow
engine enabling job submission, input selection, and data piping between jobs.Figure 2.1 summarizes the
components adopted by the partners and shows how they interact with the grid middleware. A more detailed
description follows.

HUG Grid setup

The HUG group has a particular Grid setup to assure that computation of data is also possible inside the
hospital itself to avoid the transmission of sensitive medical information. Thus a small setup inside the
hospital makes available computational power based on virtualization, Condor as computing node software
and ARC to manage the jobs [16]. To ease the creation of parallel applications and gridifythem the Taverna
workflow system is used [17]. This also includes an ARC plugin to automatically submit the created jobs,
following XRSL (eXtended Resource Specification Language)[23]. Besides the use of internal submission

1 http://www.sim.hcuge.ch/medgift/
2http://www.creatis.insa-lyon.fr/

http://www.sim.hcuge.ch/medgift/
http://www.creatis.insa-lyon.fr/


2.1 Execution environments 3

Taverna

ARC plugin

ARC CE

LRMS

NorduGrid Resources

gridFTP

XRSL Job

LFC

SRM

VBrowser

MOTEUR

GASW

gLite WMS

gLite CE

LRMS

EGEE resources

LFC

SRM

gridFTP

JDL Job

DIANE Master
sh script

Figure 1:Overview of the Grid environments used by HUG (left) and CREATIS-LRMN (right).

interfaces the created applications can simply be submitted to external resources such as the KnowARC3

virtual organization (VO)of the Nordugrid4 infrastructure using the exactly same submission interface.
In this case, jobs are handled by the ARC Computing Element (CE) and delegated to a Local Resource
Management System (LRMS) that eventually schedules them oncomputing resources. In/output data is
handled directly by the CE which pre-/post-stages files from/to storage systems. Supported file protocols
include gridFTP, Logical File Catalog (LFC) and the StorageResource Management (SRM).

CREATIS–LRMN Grid setup

The workflow description in the second setup relies on the Scufl (Simple Concept Unified Flow Language)
language, generated using the Taverna workbench as a workflow editor [17]. Code is wrapped into work-
flow components using the Generic Application Service Wrapper (GASW [8]), which provides a basic
command–line description language enabling input file staging, parameter specification, output file naming
and transfer, as well as dependency specification. Workflowsare then executed on gLite using MOTEUR [9]
that generates, submits and monitors jobs on gLite complying to the Job Description Language (JDL)as fig-
ured by plain lines on figure2.1 . The main difference with ARC regarding job submission is that in ARC
the site selection (matchmaking) is performed by the clientwhereas in gLite it is delegated to a global
matchmaker (called Workload Management System — WMS). gLite’s strategy is supposed to yield better
scheduling while ARC’s ensures better scalability.Moreover, data has to be transferred by the job itself
once it reaches the computing resource.A comparison of ARC and gLite job life–cycles is reported in [10].

Alternatively (dashed lines on figure2.1) , MOTEUR can also submit tasks to the DIANE pilot–job frame-
work [13]5, offering apull execution model supposed to improve performance on high–throughput systems.
In DIANE, tasks are no longer pushed to computing resources but generic pilots are submitted. Once run-

3http://www.knowarc.eu/
4http://www.nordugrid.org
5http://cern.ch/diane/

http://www.knowarc.eu/
http://www.nordugrid.org
http://cern.ch/diane/


2.2 Data interoperability for content–based image retrieval 4

ning, pilots connect back to a central pool, fetching tasks when available and dying otherwise. Workflow
input files and results are graphically browsed and selectedon Grid storage resources using the Virtual
Resource Browser (VBrowser) [18, 19]. Eventually, jobs execute on resources of thebiomed EGEE VO,
external to the institution.

Data is stored on gLite Storage Elements (SE) equipped with the Storage Resource Management interface
(SRM) [1]. Data files are indexed in the Logical File Catalog (LFC), which maps application–specific logical
file names to their physical locations.

2.2 Data interoperability for content–based image retrieval

Part of the medical data sets used for imaging cannot be deported outside of the hospital network for privacy
reasons. On the other hand, CBIR relies on databases that canbe stored on external resources, potentially
belonging to another Grid and VO. The goal of this subsectionis to enable the execution of applications
developed on ARC with databases stored on EGEE servers.

Accessing the data stored on EGEE from the protected hospital network is not straightforward. Outbound
connections in the HUG have several constraints: connections can only use port 80 (HTTP/HTTPS) and
are always passing through a restrictive proxy server. Thus, communication with a Grid server outside
of the hospital is hardly possible by default. To help scientific projects we were allowed to circumvent
some of these restrictions by using a VPN (Virtual Private Network) connection towards the network of
the University of Geneva. This network then has much lower security restrictions. The group also has two
servers for data processing on the University network that are used for accessing other Grid networks.

The tested CBIR application can be divided into two parts: (i) downloading the data from the EGEE Grid
servers to the University network, and (ii) executing the medical image analysis application on the internal
hospital Grid. The latter is not related to data interoperability, we thus focus on the first step with the purpose
of evaluating feasibility and possible overhead. Two client tools are tested for data transfer: the Java LFC
client of VBrowser [18] and the ARC standalone client, which is also interfaced with LFC. Other related
candidate tools for evaluation include the Grid Storage Access Framework (GSAF)6 and JavaGAT [22].

2.3 Resource sharing for radiotherapy simulation

Computationally expensive simulation experiments often require large amounts of resources that may not be
available on a single Grid at a given time. For instance, radiotherapy simulation [2] benefits from hundreds
(≥300) of concurrent CPUs (Central Processing Units). The goal of this section is to enable the execution
of applications developed for EGEE on ARC resources.ARC resources under consideration are the ones
provided by the Nordugrid infrastructure.

Two solutions can be envisaged for this execution using the execution environment described in section2.1:
(i) DIANE submits pilot-jobs to ARC (MOTEUR still submits tasks to DIANE), or (ii) MOTEUR directly
submits jobs to ARC (DIANE is not used). Solution (i) provides more interoperability since every applica-
tion relying on DIANE could then be executed both on gLite andon ARC. Besides this, the solution would
easily enable a joint exploitation of ARC and gLite resources for a single application. On the other hand, (ii)
provides better performance since the job generation can beadapted to a particular middleware. In practice,
implementing (i) raises several technical issues.

Firstly, since tasks are only fetched when the job reaches a computing resource (so–calledlate binding),

6http://grid.ct.infn.it/twiki/bin/view/PI2S2/GSAF

http://grid.ct.infn.it/twiki/bin/view/PI2S2/GSAF


2.3 Resource sharing for radiotherapy simulation 5

pre–staging of files cannot be implemented easily in a pilot–job framework. As a consequence, files need to
be transferred onto the computing node by the task itself, which not only underexploits the features of ARC
but is also technically heavy to implement since neither thedata transfer client nor the user proxy are present
on the computing node by default. In addition, it may lead to an unnecessary and uncontrollable overload
of the storage service.

Secondly, in all cases, task generation by MOTEUR has to be adapted to the execution on an ARC computing
node to accommodate, e.g., syntax differences in data clients. This is problematic given the late binding of
tasks provided by pilot–jobs.

These reasons led us to implement solution (ii). The GASW wasextended to support submission to ARC
clusters. Beyond minor changes in job submission, monitoring, and status syntax, this required the adapta-
tion of the job description format (from JDL to XSRL) and of the job content (from explicit to automatic
data transfers).

Data transfers from EGEE to NorduGrid were performed using ARC’s support for LFC (LFC locations can
be specified in XRSL, the files being automatically transferred to/from EGEE resources). Because of the
numerous ambiguities, only non–DPM EGEE SEs (Storage Elements) could be used, though7. A more
important issue is that the VO–specific physical locations are not automatically generated by the generic
ARC client, whereas it is done by the gLite LFC client for the registered EGEE VOs. The SRM output
directory path thus has to be explicitly suggested in the configuration of the workflow manager that uses
ARC, while only the SE host has to be specified for the EGEE infrastructure. This is potentially problematic
in case of changes in the configuration of an EGEE SE (e.g. upgrade leading to change of the directory
hierarchy or permissions).

Authorization of an EGEE user on NorduGrid clusters was easily performed by registering the X509 cer-
tificate in theknowarc.eu VO. However, being a member of two VOs led to some technical issues when
information about the VOs is stored in the proxy itself (i.e.the proxy contains an extension obtained from
the VO Management Service — VOMS). Due to the lack of a relevant specification that would formalize
processing of multiple VOMS extensions, proxies containing two or more VOMS extensions are treated
in an arbitrary manner by SRM services, often leading to datatransfer errors. Since submission to ARC
clusters does not require any VOMS extension, we coped with this issue by using a proxy with an EGEE
VOMS extension only.

It has to be mentioned that the ease of installation of the ARCclient greatly facilitated this implementation.
The ARC client and gLite UI (User Interface) are easily able to be installed on a single Linux box. Well–
packaged distributions like the one maintained by the DutchVL–e (Virtual–Lab for eScience) project8

now allow installing and configuring a gLite UI in ca. 20 minutes, including download and configuration.
Because of its reduced dependencies, only 2 minutes were required for installation of an ARC client. This
process was also less invasive and several Linux flavors are supported.

7SRM standard currently does not allow to identify neither the transfer protocol, nor the necessary end-point details such as port
number, leading to incompatible implementations

8http://poc.vl-e.nl/

http://poc.vl-e.nl/


6

data on EGEE data on ARC
download upload download upload

VBrowser 4523 1022 X X
ARC–client 4451 997 4301 911

Table 1: Comparison of transfer speed (KB/s) to ARC computing resources for data stored on EGEE and
ARC clusters with a catalog service.

data on EGEE data on ARC
download upload download upload

VBrowser 339 116 X X
ARC–client 361 110 345 112

Table 2: Comparison of transfer speed (KB/s) to ARC computing resources for data stored on EGEE and
ARC clusters with Catalog service, using VPN in both cases.

3 Experiments and results

3.1 Evaluation of the access to data on EGEE and ARC clusters

The ARC standalone client is a Linux command line tool that offers not just ARC–specific job management
functionality, but also some fundamental data transfer commands. Its interoperability with various data
management services — either plain GridFTP servers, SRM or LFC — is demonstrated in [12]. However,
in HUG, users are used to Windows–like graphical interfaces. VBrowser provides such an interface for data
management. It also adapts necessary protocols to access the data on bothgLite and ARC.

Two virtual organizations(VO) are used for this test: theBiomed VO based on the gLite middleware and
theknowarc.eu VO of the EU KnowARC project. The test file comprises 40MB of a compressed image
collection; physically it is located in Italy (the gLite server, Biomed VO) and Hungary (the ARC server,
knowarc.eu VO). Two different data indexing services were used: the Globus Replica Location Service
(RLS) [4] for ARC and the LFC catalog and indexing service for EGEE gLite. ARC can use both LFC and
RLS for data indexing, while gLite currently supports only LFC. Incidentally, VBrowser cannot deal with
RLS either, thus only the other interoperability possibilities were tested.

Tests are performed both on university network (Table1) and using a VPN from the hospital network (Ta-
ble 2). Client tools are installed both on a server located in University of Geneva and a workstation inside
the HUG. For reasons explained beforehand, the communication from the HUG has to be through a VPN.
A VPN encrypts the communication in both directions, which reduces the download/upload speed. When
performing the tests from the university network the difference of speed is not significant and depends on the
network speed (EGEE sites are network–wise closer to the HUGthan the ARC ones). It should be pointed
out that ARC offers a light–weight storage element named Smart Storage Element, which uses the HTTPS
protocol for the data transfer. This can help reducing the communication overhead.

Regarding the comparison between VBrowser and ARC client, no significant difference was detected in
terms of overhead.Comparison tests on larger data sets are part of our future work. Client tools with a
windows–like GUI are regarded as more user–friendly. The ARC client, though lacking a GUI, supports
more existing URL formats, which can be an advantage for users who want to access different storage
systems.



3.2 Joint execution of radiotherapy simulations on EGEE and ARC clusters 7

input archive GATE release GATE wrapper scriptOutput archive
size 1.6 MB 28 MB 7.9 KB 697 B

SE location DE GR NL BG

Table 3: GATE input/output file sizes and locations.

3.2 Joint execution of radiotherapy simulations on EGEE and ARC clusters

Using the setup described in section2.3 we were able to execute on ARC resources a workflow initially
developed on EGEE. The underlying application is GATE, a Monte Carlo simulation code currently used
by more than 1000 users9 and used here for radiotherapy simulation as described in [21]. Such Monte Carlo
simulations are divisible–load problems, i.e. they can be divided into as many tasks as wanted. We here
consider a 3h49’-simulation (average on ARC and gLite clusters used for the experiment) split into 50 jobs.

Each of the 50 tasks requires 3 input files and produces 1 output archive wrapping all the results. The
job itself is wrapped into a script performing in/output data transfers (for gLite only), checking execution
correctness and writing monitoring information such as total run time in the job console. Four gLite SEs
spread all over Europe were used. File sizes and locations are reported in Table3.

The experiment was repeated 5 times (experiments are coinedbatch 1 to 5 in the following). Each batch
was simultaneously submitted to ARC and gLite. To have similar matchmaking conditions, job submission
was restricted to 3 NorduGrid sites and 3 EGEE sites. MOTEUR was configured to resubmit failed jobs
up to 3 times. It should be noted, however, that although matchmaking conditions were comparable, ARC–
enabled sites are voluntarily academic community contributions supported on a best–effort basis, while
gLite–enabled sites were of a professional HPC grade, offering higher levels of service.

For each successful job, the submission, matchmaking, queuing, input transfer, running, output transfer,
worktime and total round–trip times were measured as shown in Table4. Some of the times were estimated
from the job status reported by the Grid Information System (IS) and others were obtained from job or
LRMS (Local Resource Management System) logs. In Table4, the job states refer to the gLite10 and ARC11

user guides.

Because KnowARC and EGEE clusters used for the experiment have a different number of nodes and CPU
characteristics, the total round–trip times cannot be compared. In particular, job queuing and running times
are expected to be largely affected by those differences. Instead, we remove those two values from the
total round–trip time to define a comparable Grid overhead defined as{5}− ({3}+{4.b}) referring to the
notations of Table4.

This comparable Grid overhead breaks down to the sum of the submission, matchmaking, input transfer,
output transfer andinfrastructure overhead(ISO). The latter measures the difference between thereal job
worktime (i.e. obtained from the job and/or LRMS stdout) andthe worktime given by the information
system, i.e., using notations of Table4:

ISOgLite = {4}− ({4.a}+{4.b}+{4.c}) and ISOARC= {4}− ({4.b}+{4.c})

Table5 reports the comparable overheadof the successful jobs for the 5 batches and how it breaks downto
submission, matchmaking, in/output transfer and ISO. The latter accounts for the largest proportion of the

9http://www.fgate.fr/
10http://glite.web.cern.ch/glite/documentation/userGuide.asp
11http://www.nordugrid.org/documents/ui.pdf

http://www.fgate.fr/
http://glite.web.cern.ch/glite/documentation/userGuide.asp
http://www.nordugrid.org/documents/ui.pdf


3.2 Joint execution of radiotherapy simulations on EGEE and ARC clusters 8

gLite ARC
Measured time Start state in IS End state in IS Start state in IS End state in IS

{1} - Submission Not submitted Successfully subm. Not submitted Successfully subm.
{2} - Matchmaking Submitted Scheduled not applicable

{3} - Queuing Scheduled Running Successfully subm. INLRMSR
{4.a} - Input transfer Job stdout LRMS stdout
{4.b} - Running Job stdout

{4.c} - Output transfer Job stdout LRMS stdout
{4} - Worktime Running Completed Running Finished

{5} - Total round-trip Not submitted Completed Not submitted Finished

Table 4: Definition of measured times on ARC and gLite.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
gLite ARC gLite ARC gLite ARC gLite ARC gLite ARC

Number of jobs 49 50 49 50 48 50 47 49 48 50
Subm. Mean (s) 3.7 15.5 3.6 14.8 4 16.1 4.3 14.4 3.8 13.8

Stdev (s) 0.87 12.2 0.86 9.9 0.97 13.1 1.6 10.3 1.1 10.4
Matchm. Mean (s) 26.6 0 637.4 0 27.9 0 25.2 0 28.8 0

Stdev (s) 6.8 0 862.7 0 7.4 0 6.5 0 6.5 0
In. trsf. Mean (s) 47.7 26.6 44.4 22.4 44.8 25.0 42.9 22.4 42.8 22.8

Stdev (s) 8.9 8.7 6.0 2.8 4.4 6.0 6.2 4.7 6.6 4.1
Out. trsf. Mean (s) 7.9 18.3 12.5 17.4 8.7 14.2 9.4 17 8.0 14.7

Stdev (s) 1.0 4.2 18.4 2.8 2.3 1.5 6.2 9.4 1.8 2.2
ISO Mean (s) 634.3 1255.4 333.7 1280.6 523.5 1257.8 694.2 1321 697.2 1242.3

Stdev (s) 635.3 x 516.0 x 531.4 x 610 x 537.8 x
Comp. over. Mean (s) 719.9 1289.4 1032.1 1312.4 608 1288 776 1352 781 1270

Stdev (s) 721.4 237.4 700.1 202.5 532.1 273.9 611.4 349 536.2 223.4

Table 5: Overhead comparison between ARC and gLite on GATE radiotherapy application. Each batch
corresponds to a repetition of the experiment.

comparable overhead in both cases. In average, it is close to10 minutes for gLite (576s) and 20 minutes for
ARC (1271s).Data transfers have similarperformance both on ARC and gLite, which confirms the ability
of the ARC client to efficiently handle files stored on EGEE, asshown in section3.1. As explained in sec-
tion 2.1, ARC does the matchmaking on the client side, i.e., during the submission process, which explains
why the perceived submission time on ARC is higher than on gLite (about 4 times on average). However,
the main result is that in all cases, the sum of submission andmatchmaking times on gLite are significantly
higher than on ARC. Those results show that ARC’s strategy isglobally less penalizing that gLite’s in our
case. In particular, batch 2 shows that an overloaded WMS dramatically penalizes the experiment, which
could not occur on ARC. On the other hand, one should keep in mind that gLite’s strategy may lead to better
scheduling, thus reducing the job queuing times in LRMS, which is not considered here. Moreover, ARC’s
strategy may also lead to scalability issues when several experiments are run from the same client.



9

4 Conclusions

In this work, we successfully implemented data and resourcesharing between ARC and gLite. This allowed
us to (i) run a CBIR application on ARC resources using data stored on EGEE resources and (ii) easily
deploy on ARC an application developed for EGEE. This was tested in high–level graphical execution
environments targeting medical imaging researchers. BothARC and gLite support such solutions that are
easy to use and can be of interest for researchers.

Scenarios are different for a research group that is inside amedical institution and research groups being
on more open University networks, in particular concerningnetwork connectivity. Data that can be treated
inside and outside of medical institutions might also be different. Secondary data use in general is not easy
as legal constraints often make it had to acquire data sets.

Beyond application–level interoperability, this setup enabled a comparison between ARC and gLite for
medical imaging. Concerning data sharing, the main resultsare that (i) ARC’s data transfer client manages
to reach similar performance as gLite’s to handle data stored on EGEE, (ii) the performance drop in using
the VBrowser Java driver is not significant, (iii) whether data is stored on EGEE or on ARC does not
significantly impact transfers and (iv) using VPN solutionsto circumvent connectivity limitation in hospitals
dramatically penalizes the performance. Regarding resource sharing, results show that (i) both for gLite and
ARC, the infrastructure overhead accounts for most of the job latency and (ii) on the tested application,
ARC’s strategy of implementing matchmaking on the client side yields better performance than gLite’s. All
in all, this kind of study may be of importance in the current efforts for federating European Grids in a
common European Grid Initiative (EGI).

5 Acknowledgements

We thank Piter T. De Boer for technical support on the VBrowser LFC client and David Sarrut for the help
given to the porting of the GATE application on EGEE. This work has been funded (supported) by the
EGEE–III INFSO–RI–222667 European project. This work was partially supported by the EU 6th Frame-
work Program in the context of the KnowARC project (IST 032691) and by the Swiss National Science
Foundation (FNS) in the context of the Talisman–2 project (project 200020 118638).

References

[1] A. Sim, A. Shoshani and others. The Storage Resource Manager Interface (SRM) Specification v2.2. GFD-R-
P.129, 2008.2.1

[2] J. Badel, L. Guigues, and D. Sarrut. ThIS : a Geant4-basedTherapeutic Irradiation Simulator. In1st European
Workshop on Monte Carlo Treatment Planning, 2006.2.3

[3] V. Breton, R. Medina, and J. Montagnat. DataGrid, Prototype of a Biomedical Grid.Methods of Information in
Medicine, 42(2):143–148, 2003.1

[4] A. L. Chervenak et al. Performance and Scalability of a Replica Location Service. InHPDC’04, pages 182–191.
IEEE Computer Society Press, 2004.3.1

[5] M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann, I. Livenson, J. Langgaard Nielsen, M. Ni-
inimäki, O. Smirnova, and A. Wäänänen. Advanced resource connector middleware for lightweight computa-
tional Grids.FGCS, 23(2):219–240, 2007.1

[6] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. The International Journal of
Supercomputer Applications and High Performance Computing, 11(2):115–128, 1997.1



References 10

[7] F. Gagliardi, B. Jones, M. Reale, and S. Burke. European DataGrid project: Experiences of deploying a large
scale testbed for e-science applications. InPerformance Evaluation of Complex Systems: Techniques andTools,
Performance 2002, pages 480–500, 2002.1

[8] T. Glatard, J. Montagnat, D. Emsellem, and D. Lingrand. AService-Oriented Architecture enabling dynamic
services grouping for optimizing distributed workflows execution.FGCS, 24(7):720–730, 2008.2.1

[9] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec. Flexible and efficient workflow deployement of data-
intensive applications on grids with MOTEUR.IJHPCA, 22(3):347–360, 2008.2.1

[10] M. Gronager, D. Johansson, J. Kleist, C. Sottrup, A. Waananen, L. Field, D. Qing, K. Happonen, and T. Linden.
Interoperability between ARC and gLite . IneScience, pages 493–500, 2008.1, 2.1

[11] M. Litzkov, M. Livny, and M. Mutka. Condor — a hunter of idle workstations. InProceedings of the 8th
international conference on distributed computing, pages 104–111, 1988.1

[12] M. Mambelli. OSG Storage Elements and ATLAS DDM, 2008.3.1

[13] J. Mosciki. Distributed analysis environment for HEP and interdisciplinary applications.Nuclear Instruments
and Methods in Physics Research A, 502:426429, 2003.2.1

[14] H. Müller, N. Michoux, D. Bandon, and A. Geissbuhler. Areview of content–based image retrieval systems in
medicine – clinical benefits and future directions.Int. Journal of Medical Informatics, 73:1–23, 2004.1

[15] M. Niinimäki, X. Zhou, A. Depeursinge, A. Geissbuhler, and H. Müller. Building a community grid for medical
image analysis inside a hospital, a case study. InMICCAI-Grid’08, pages 3–12, 2008.1

[16] M. Niinimäki, X. Zhou, A. Depeursinge, A. Geissbuhler, and H. Müller. Building a community grid for medical
image analysis inside a hospital, a case study.FGCS, 2009.2.1

[17] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover, M. Pocock, A. Wipat,
and P. Li. Taverna: A tool for the composition and enactment of bioinformatics workflows. Bioinformatics
journal, 17(20):3045–3054, 2004.2.1, 2.1

[18] S. Olabarriaga, P. de Boer, K. Maheshwari, A. Belloum, J. Snel, A. Nederveen, and M. Bouwhuis. Virtual Lab
for fMRI: Bridging the Usability Gap. Ine-Science’06, 2006.2.1, 2.2

[19] S. Olabarriaga, T. Glatard, K. Boulebiar, and P. de Boer. From ’low-hanging’ to ’user-ready’: initial steps into a
healthgrid. InHealthGrid’08, pages 70–79, 2008.2.1

[20] M. Riedel, editor.Int. Grid Interoperability and Interoperation Workshop. IEEE, 2008.1

[21] D. Sarrut and L. Guigues. Region-oriented CT image representation for reducing computing time of monte carlo
simulations.Med Phys, 35(4), 2008.3.2

[22] R. van Nieuwpoort, T.Kielmann, and H. Bal. User-friendly and reliable grid computing based on imperfect
middleware. InSC’07, 2007.2.2

[23] X. Zhou, H. Krabbenhöft, M. Niinimäki, A. Depeursinge, S. Möller, and H. Müller. An easy setup for parallel
medical image processing: Using Taverna and ARC. InHealthGrid’09, 2009.2.1


	Introduction
	Methods
	Execution environments
	HUG Grid setup
	CREATIS--LRMN Grid setup

	Data interoperability for content--based image retrieval
	Resource sharing for radiotherapy simulation

	Experiments and results
	Evaluation of the access to data on EGEE and ARC clusters
	Joint execution of radiotherapy simulations on EGEE and ARC clusters

	Conclusions
	Acknowledgements

