
LCG AND ARC MIDDLEWARE INTEROPERABILITY
M. Grønager*, UNI-C, Lyngby, Denmark

A. Wäänänen, Univ. of Copenhagen, Denmark
T. Ekelöf, M. Ellert, Uppsala Univ., Uppsala, Sweden
B. Kónya, O. Smirnova, Lund Univ., Lund, Sweden

F. Ould-Saada, S. Haug, A. Konstantinov, Univ. of Oslo, Oslo, Norway
L. Field, D. Smith, CERN, Geneva, Switzerland

R. Walker, Simon Fraser Univ., Vancouver, Canada

Abstract
LCG and ARC are two of the major production-ready Grid

middleware solutions being used by hundreds of HEP
researchers every day. Even though the middlewares are based
on same technology, there are substantial architectural and
implementational divergences. An ordinary user faces
difficulties trying to cross the boundaries of the two systems.
LCG clients so far have not been capable accessing ARC
resources and vice versa. After presenting the similarities and
differences of the LCG and ARC middlewares, this paper
focuses on the strategies for implementing interoperable layers
between the two solutions. The most important areas are job
submission and the information system. The basic requirement
for the interoperability layer is the capability for transparent job
submission from LCG to ARC.

INTRODUCTION
The ARC[1] and LCG[2] middleware projects shared a common
background in the early stages of the European Data Grid
project[3]. LCG is an evolution and ARC is an actual spawn.
The original aim, however, remained the same. To primarily
enable the data acquisition and processing of the four
experiments connected to the Large Hadron Collider at CERN
and by achiving this goal, also enable the use of the middleware
by other research communities.

The LCG middleware is a deployment ready software stack built
from components of other middlewares. The most important are
those from EDG, followed by elements of AliEn[4] and the
middleware developed by the EGEE[5] project, gLite[6]. In
addition, LCG in its various versions often offers several
different solutions for the same middleware component,
simplifying transition from one implementation to another. The
version numbering scheme of LCG continues that of EDG, and
around summer 2006 LCG will change name to gLite version 3,
emphasizing the introduction of more and more services from
gLite, though still leaning on the EDG heritage. In this paper, the
comparison of the middlewares is based on LCG version 2.6, but
the proposed scheme for interoperability is based on components
to be introduced in gLite 3.

The ARC middleware was born from the Nordic Council of
Ministers' supported project ”Nordic Testbed for Wide Area
Computing and Data Handling” which ran in 2001-2003 and
gave rise to the NorduGrid collaboration[1]. It aimed to ensure
Nordic participation in the EDG project. With the help of the
Nordic Data Grid Facility[7], the ARC middleware was
deployed on the majority of the Nordic computing facilities and
in 2002 was the first and largest production Grid in the world.

Today there are several resources using ARC outside the Nordic
countries as well. Most compute resources in the Nordic
countries are using the ARC middleware, although a few
resources recently also became accessible also through LCG
middleware.

In this study, version 0.4.5 of ARC is the basis for the
comparison.

One of the LHC experiments, the ATLAS experiment, has
conducted several production test runs of its application-specific
software. One of these, ATLAS Data Challenge 2, used
resources in US and Europe and as such had to use several
middlewares. For this purpose a meta-scheduler, the ATLAS
Production System[8], was created, enabling job-submission to
the three grids: Grid3 (now OSG[9]), LCG and NorduGrid.

It is the desire to streamline this work into actual interoperability
between several grids that motivates the OSG LCG
interoperability as well as this activity.

The first step is to compare the two grid middlewares and
understand the differences. After this, Second, is to work out
how these differences can be bridged. The overall goal from
this is to understand what standards are required to retain
interoperability.

MIDDLEWARE COMPARISON
LCG and ARC shared a common background in the European

Data Grid project and hence also share several of the basic
building blocks.

The most basic building block of ARC 0.4.5 and LCG 2.6.0 is
the Globus Toolkit version 2.4 (GT2) [10]. Globus by itself is
not a deployment ready grid solution, rather it is a toolkit for
building other grid middleware. GT2 defines a security scheme
(GSI – Globus Security Infrastructure)[10] for user
authentication, authorization and delegation of rights. The
scheme is based on X509 certificates and short lived proxy
certificates[11] inspired by the Kerberos 5[12] security
framework.

GT2 also defines protocols for file-transfer (GSIFTP), job-
submission (GRAM) and an information system based on
LDAP(MDS) [10]. Finally, GT defines a resource specification
language, RSL.

ARC and LCG use the same security framework based on the
GT2 GSI and support the Virtual Organisation extensions to
GSI, VOMS[13], which was created during the EDG project.
The file transfer protocol gsiftp is also used by both
middlewares, and enables the transfer of files between storage
elements of LCG and ARC.

__

*gronager@nbi.dk

Consider table 1 in which the different protocols, schemas and
descriptions of LCG and ARC are listed. Except for security and
file transfer protocols, ARC and LCG differ in the other areas, ,
although in some areas the differences are less important. When
GT2 componets are proven not to handle a production scenario,
a different solution was introduced by each project to replace the
GT2 component with something that was production quality.
This resulted in divergence between the different middlewares.

The job submission component in GT2 did not scale. The
gateway spawns a process for each job running on a cluster,
which for bigger clusters might result in hundreds of processes
running, rendering the gateway completely unresponsive, further
file staging capabilities were very limited in the first versions.
ARC solves these problems by introducing its own file-staging
capalble grid-manager and by using gsiftp, with a custom plugin
to submit jobs.

The same problem was tackled within LCG by using Condor-
G, from Condor[14], as a submission protocol. Condor-G uses a
series of Globus commands to kill the processes spawned per job
on the gateway and replaces this with a process per user, which
in most cases scales much better as for production scenarios as
one user typically submits several hundreds jobs[8].

Both LCG and ARC rely heavily on the information system
as both push jobs to the resources. The original GT2 MDS
(Monitoring and Discovery System) is based on several LDAP
servers. Those located at sites and containing resource
information (GRIS) and indexing servers which aggregate the
information (GIIS). They are usually organized in a tree-like
cached hierarchy enabling complete information retrieval by
querying the top level GIIS node. However, when multiple
clients request information, GIIS-es become seriously
overloaded due to serving multiple recursive LDAP searches.
Further internal queries for updating the cache tends to timeout
and cause stability problems.

ARC and LCG have solved this problem in different ways. ARC
uses a top level GIIS only to index the actual sites which are
then queried in parallel by the brokering client, hence no caching
is involved. LCG has replaced the hierarchical caching by a
single cache database the BDII[15]. Both schemes solve the lack
of scalability in the GT2 approach.

GT2 offers templates for representing only compute host
resources in the information system. However, a more complete
information schema was needed . ARC solved this by a using
hierarchical schema describing clusters, queues, jobs and users.
This schema is usually referred to as the nordugrid-schema[16].
The GLUE schema[17] that is used by LCG originates from the
work performed within the EU DataTAG project, and is
substantially different from that of ARC.

In the area of brokering, GT2 offers no solution, thus every
project has to come with own implementations. One of the most
notable differences between ARC and LCG is the completely
different approach to brokering. ARC brokering is done solely
by the user interface clients, where LCG has a resource broker
service for a large number of user interfaces. To understand the
motivation behind these two choices, it is worthwhile
considering the usual requirement for a grid. The user should be
able to submit a job from a user interface – e.g. a laptop, go
offline and then later check the job progress, probably from a

different location. This means that no connection can be held
open between the resource and the user interface. This cannot be
fulfilled by GT2 since server initiated back connections will be
made. The same limitations also apply to the GRAM via
Condor-G submission. Hence, there is a need to either introduce
a submission server, which also can do the brokering, for
example the LCG Resource Broker, or to use a different
protocol other than GRAM, like the ARC gsiftp job submission.

The introduction of a special server for resource brokering
adds an extra bottleneck, however, it also enables much more
detailed and automated job monitoring and inter-job
dependencies as can be described with DAG jobs[18].

For job description, GT2 uses RSL (Resource Specification
Language), which mostly describes the resources needed by a
job. ARC has adapted this to become a job description language,
adding extra attributes to enable specification of e.g. runtime
environments etc. LCG followed EDG in basing matchmaking
and brokering on Condor ClassAds[19], which enables a fine
description of jobs and resources. Hence it was straightforward
to choose the Condor job description language (JDL) to describe
jobs and resource requests. Before the actual submission to the
Globus-based compute elements it is, however, translated into
Globus-RSL.

Functionality ARC LCG

Security GSI+VOMS GSI+VOMS

Info-system LDAP+ARCGII
S

LDAP+BDII

Info-scheme ARC GLUE 1.2

Job-submission GSIFTP GRAM/Condor-G

Job-description xRSL JDL

Brokering by client by RB

File transfer GSIFTP GSIFTP

Resource
Manager

ARC Grid
Manager

Globus Job
Manager

 Table 1: Comparison between ARC and LCG. The Resource Manager is the
service at the local resource responsible for managing jobs on the resource.

ENABLING LCG TO ARC JOB
SUBMISSION

In order to enable brokering and submission to ARC
computing resourcess (CEs), several issues need consideration.
In Table 1. one can easily see the differences that need to be
addressed. The first target naturally falls on how to submit jobs
– via the client or via the resource broker. To best follow the
LCG scheme we chose to submit via the resource broker, and
since a change from the old LCG-RB to the new gLite-RB was
already planned, the gLite-RB should be used.

Submission from the resource broker to the ARC CEs first
requires that the ARC information system is imported into the
BDII used by the resource broker. This was accomplished by
doing a small modification to the BDII that translates the ARC
schema to the Glue Schema between querying the site and
adding the information to the BDIIs database. The translation
key is listed in Table 2. After translation the result is made
availabe in the BDII.

A similar approach was used for cross grid brokering between
LCG and ARC previously [20]. Instead of translation into
GLUE, the information was fed directly into a Condor collector
process.

GLUE ARC
GlueSiteUniqueID nordugrid_cluster_location
GlueSiteName nordugrid_cluster_location
GlueSiteDescription nordugrid_cluster_location
GlueSiteUserSupportContact nordugrid_cluster_support
GlueSiteSysAdminContact nordugrid_cluster_support
GlueSiteSecurityContact nordugrid_cluster_support
GlueClusterUniqueID nordugrid_cluster_name
GlueClusterName nordugrid_cluster_name
GlueClusterService nordugrid_cluster_name
GlueSubClusterUniqueID nordugrid_cluster_contactstring
GlueHostApplicationS.w.R.T.Env. nordugrid_cluster_runtimeenv.
GlueCEUniqueID nordugrid_cluster_contactstring
GlueCEHostingCluster nordugrid_cluster_name
GlueCEName nordugrid_cluster_aliasname
GlueCEInfoHostName nordugrid_cluster_name
GlueCEInfoLRMSType nordugrid_cluster_lrms_type
GlueCEInfoLRMSVersion nordugrid_cluster_lrms_version
GlueCEInfoTotalCPUs nordugrid_cluster_totalcpus
GlueCEStateRunningJobs nordugrid_cluster_usedcpus
GlueCEStateTotalJobs nordugrid_cluster_totaljobs
GlueCEStateWaitingJobs nordugrid_cluster_queuedjobs
GlueCEPolicyAssignedJobSlots nordugrid_cluster_usedcpus

Table 2. The Translation key between GLUE and ARC schemas. This table is

only the most important minimal subset, which was used in the first translation
scripts. For the full GLUE to ARC translation key, please consult [16]

The information retrieval process takes around 2 seconds and
the translation process is 6 seconds. The process is repeated
every 2 minutes.

The gLite Resource Broker can query information about ARC
CEs in a similar manner as for the LCG CEs and hence the ARC
CEs are also used in the brokering. If an ARC CE is chosen by
the brokering algorithm, the job will be adapted to submission
via Condor. The adaptation is done for submission to all CE
types, whether an GT2 based LCG CE, a Condor-BLAHP based
gLite CE or as in the present case, submission via gsiftp to an
ARC CE. Condor manages the actual submission and
adaptation. Thus the only thing needed is to inform Condor of
the “grid type” for the submission target. Figure 1 illustrates
this and outlines the important part of the file JobAdapter.cpp in
where this selection is made. Currently, Condor (version 6.7.15)
supports GT2, GT3, GT4, NORDUGRID and CONDOR-C
submission targets. Given the chosen target is NORDUGRID,
Condor submits the job via Condor-G, transforms the JDL into
xRSL and does the actual submission via the gsiftp protocol.

Figure 1: The proposed LCG->ARC interoperability setup. Jobs are submitted through gLite to the gLite resource broker. The BDII used for the brokering has been
updated with information obtained and translated form ARC compute elements. With this brokering information a proper site is chosen. If the site is of type “nordugrid” a
condor classadd “grid_type=nordugrid” is inserted resulting in submission through gsiftp.

Figure 1 shows the complete LCG to ARC interoperability
chain: A user submits a job using glite-job-submit. The
job then enters the gLite resource broker where the job
requirements are compared to the advertised classads in the
BDII. The BDII has been updated with data from the ARC
information system. If an ARC CE is found to best suit the job
requirements the job enters the JobAdapter. From here all the
job specifications and BDII information are filled into Condor

classad structures and in particular, the grid_type is set to
“nordugrid”. The job now enters Condor-G, which upon
resolving ClassAds uses the NorduGrid-GAHP (Grid ASCII
Helper Protocol) to submit the job to the ARC CE using gsiftp
job submission. While the job is running, the NorduGrid-GAHP
adapter runs on the Resource Broker and monitors job state. On
completion, the job output is transferred back to the resource
broker, and becomes available for the user interface.

STANDARDS AND CONCLUSIONS
We have described the differences and similarities between

LCG and ARC grid middlewares and explained the course for
this in a historical view.

Furthermore, an interoperability setup for doing LCG to ARC
cross grid job submissions was presented. The scheme aims for
a high degree of interoperability where an ARC CEs can be used
as a submission target on the same level as a classic LCG CE or
the new gLite CE.

The aim for this interoperability work has been to enable
cross grid submission on a short time scale. In the long term ,
the efforts of the Global Grid Forum initiatives in general and
especially the MultiGrid working groups on Interoperability
should work towards common interfaces. Further, on the longer
term we plan to add ARC to LCG job subission and further work
on job-management.

Logging and bookkeeping has not been addressed in this
paper, as we expect that the work towards standards in this area
will lead to interoperability between LCG and ARC without the
need for special adapters. Furthermore, we expect that the
current efforts on the GLUE2 schema will eliminate the need for
the information system translation step as presented here.

ACKNOWLEDGEMENTS
This work was supported by the EGEE, EGEE-II and
KnowARC EU projects. Further, the authors which to thank E.
Laure, M. Schulz and I. Bird, CERN for fruitful discussions and
input within the ARC-LCG interoperability task force.

REFERENCES
[1] http://www.nordugrid.org/.
[2] http://lcg.web.cern.ch/LCG/.
[3] http://eu-datagrid.web.cern.ch/eu-datagrid/
[4] http://alien.cern.ch/
[5] http://public.eu-egee.org/
[6] http://glite.web.cern.ch/
[7] http://www.ndgf.org/
[8] R. Sturrock et al., "Performance of the NorduGrid ARC

and the Dulcinea Executor in ATLAS Data Challenge 2",
in A.~Aimar and J.~Harvey and N.~Knoors, Proc. of
CHEP 2004, CERN-2005-002, 2005, p. 765-768

[9] http://www.opensciencegrid.org/
[10] http://www.globus.org/
[11] RFC3820
[12] http://web.mit.edu/kerberos/
[13] http://grid-auth.infn.it/docs/VOMS-Santiago.pdf

[14] http://www.cs.wisc.edu/condor/
[15] L. Field, M. W. Schulz, “Grid Deployment Experiences:

The path to a production quality LDAP based grid
information system”, in A.~Aimar and J.~Harvey and
N.~Knoors, Proc. of CHEP 2004, CERN-2005-002, 2005

[16] http://www.nordugrid.org/documents/arc_infosys.pdf
[17] http://infnforge.cnaf.infn.it/glueinfomodel/index.php/-

Spec/V12
[18] http://www.cs.wisc.edu/condor/dagman/
[19] R. Raman et al., “Policy Driven Heterogeneous Resource

Co-Allocation with Gangmatching”, Proc. of the Twelfth
IEEE Int. Sym. on High-Perf. Dist. Comp., June, 2003,
Seattle, WA

[20] R. Walker et al., “A Grid of Grids using Condor-G”, Proc.
of CHEP 2006, (to be published)

http://lcg.web.cern.ch/LCG/
http://www.cs.wisc.edu/condor/dagman/
http://infnforge.cnaf.infn.it/glueinfomodel/index.php/Spec/V12
http://infnforge.cnaf.infn.it/glueinfomodel/index.php/Spec/
http://infnforge.cnaf.infn.it/glueinfomodel/index.php/Spec/
http://infnforge.cnaf.infn.it/glueinfomodel/index.php/
http://www.nordugrid.org/documents/arc_infosys.pdf
http://www.cs.wisc.edu/condor/
http://web.mit.edu/kerberos/
http://www.globus.org/
http://www.opensciencegrid.org/
http://public.eu-egee.org/
http://alien.cern.ch/
http://eu-datagrid.web.cern.ch/eu-datagrid/

	LCG and ARC middleware interoperability
	INTRODUCTION
	MIDDLEWARE COMPARISON
	ENABLING LCG TO ARC JOB SUBMISSION
	Standards and CONCLUSIONS
	Acknowledgements
	References

