



## **NorduGrid Tutorial**

## **Client Installation and Job Examples**

CSC Grid Workshop March 31, 2004

Arto Teräs arto.teras@csc.fi





### Steps to Start Using NorduGrid

- 1) Install the client software
- 2) Request a certificate from a Certificate Authority (CA)
- 3) Install the certificate
- 4) Log in to the Grid
- 5) Test the installation
- 6) Write a job description using xRSL language
- 7) Submit the job
- 8) Monitor the progress of the job
- 9) Fetch the results





## Installing the NorduGrid Client

- Required to submit jobs to NorduGrid
- Download from http://ftp.nordugrid.org/download/
  - Binaries for various Linux distributions, source code also available
- Easiest way to get started is to install the standalone client
  - Uncompress in a directory (no root privileges required):
     \$ tar -zxvf nordugrid-standalone-0.3.36-1.i386.tgz
  - Run the environment setup script:
     \$ cd nordugrid-standalone-0.3.36
     \$ . ./setup.sh
- RPM packages are recommended for multi-user installations





#### **Requesting and Installing the Certificate**

- Create a certificate request
  - \$ grid-cert-request -int
- This generates directory .globus in your home directory and inside it a file named usercert\_request.pem which should be sent to a Certification Authority
  - Finnish users should email to NorduGrid CA <ca@nbi.dk> (this may change in the future)
- Wait for an answer from the CA
  - Signed certificate sent by the Certificate Authority should be saved as file .globus/usercert.pem





#### What Does a Certificate Look Like?

- Consists of two files:
  - Private key is protected by a password and kept secret
  - Public key is given out to third parties
  - Certificate Authorities sign the public key, even they never see the private key
- Look like a string of random numbers and letters, but tools can be used to convert the information in readable form
  - \$ grid-cert-info -file <certificate file>
  - For example, my identity stored in my NorduGrid certificate is "O=Grid, O=NorduGrid, OU=csc.fi, CN=Arto Teras"





# Logging in and Testing the Installation

- Log in to the Grid
  - \$ grid-proxy-init
- Use command **ngtest** to test the installation
  - \$ ngtest 1 -d 1 (send test job 1, show level 1 debug info)
  - \$ ngget ngtest-job-1 (fetch result files of the test job)
- In case of problems, read the manual and frequently asked questions list (FAQ), ask the mailing list ...





#### NorduGrid User Interface

- Set of command line utilities:
  - **ngsub** to submit a task
  - ngstat
     to obtain the status of jobs and clusters
  - ngcat to display the stdout or stderr of a running job
  - **ngget** to retrieve the result from a finished job
  - ngkill to cancel a job request
  - **ngclean** to delete a job from a remote cluster
  - **ngrenew** to renew user's proxy
  - **ngsync** to synchronize the local job info with the MDS
  - **ngcopy** to transfer files to, from and between clusters
  - ngremove to remove files





# Writing a Job Description File

- Resource Specification Language (RSL) files are used to specify job requirements and parameters for submission
  - NorduGrid uses an extended language (xRSL) based on the Globus RSL
- Similar to scripts for local queueing systems, but include some additional attributes
  - Job name
  - Executable location and parameters
  - Location of input and output files of the job
  - Architecture, memory, disk and CPU time requirements
  - Library dependencies and version requirements





**xRSL** example

```
& (executable=hellogrid.sh)
 (jobname=hellogrid)
 (stdout=hello.out)
 (stderr=hello.err)
 (gmlog=gridlog)
 (architecture=i686)
 (cputime=10)
 (memory=32)
 (disk=1)
```





#### **Submitting a Job**

- Submit the job
  - \$ ngsub -f hellogrid.xrsl
  - => Job submitted with jobid gsiftp://morpheus.
     dcgc.dk:2811/jobs/1757591474592630108
- Fetch the results
  - \$ ngget hellogrid

=> ngget: downloading files to
 /home/ajt/1757591474592630108
 ngget: download successful - deleting job
 from gatekeeper.





### Monitoring the Jobs

- Status of jobs can be queried with command ngstat
  - \$ ngstat hellogrid
  - => Job gsiftp://ingvar.nsc.liu.se:2811/jobs/5436235811735113812
     Jobname: hellogrid
     Status: FINISHING

Job gsiftp://datagrid3.csc.fi:2811/jobs/1593889897762957743 Jobname: hellogrid Status: ACCEPTED

 Grid monitor on the NorduGrid website is also a useful monitoring tool





#### Grid Monitor on NorduGrid Website

|                  | Gri                     | d Monitor | 1                     |                                                    |
|------------------|-------------------------|-----------|-----------------------|----------------------------------------------------|
| 004-01-21 CET    | 15:26:48                |           | Force refres          | Print Help Close                                   |
| rocesses: 💻 Grid | i —Local                |           |                       |                                                    |
|                  | Cluster                 | CPUs      | Load (processes: Gric | +local) Queueing                                   |
| 💶 Denmark        | DistLab (DIKU)          | 10        | 6+0                   | 0                                                  |
|                  | Morpheus                | 19        | 10+0                  | 4                                                  |
|                  | Copenhagen Alpha Linu>  | 1         |                       | 0                                                  |
|                  | Francis (AUC)           | 1         |                       | 0                                                  |
|                  | Grid-Lab (UNI-C)        | 19        |                       | 0                                                  |
|                  | NBI GRID                | 2         | 1+0                   | 0                                                  |
| + Finland        | HIP Testbed0            | 1         | 1+0                   | 0                                                  |
|                  | CSC Kirppu              | 1         |                       | 0                                                  |
|                  | Hirmu Cluster           | 4         |                       | 0                                                  |
| Norway           | Parallab IBM Cluster    | 64        | 49+13                 | 0                                                  |
|                  | Bergen Grid Cluster     | N/A       |                       | 0                                                  |
|                  | Oslo Grid Cluster       | 17        | 3+1                   | 21                                                 |
| 🖬 Slovakia       | UPJS GRID               | 1         | 1+8                   | 0                                                  |
| 🖿 Sweden         | TSV                     | 4         | 1+0                   | 0                                                  |
|                  | Hagrid (SweGrid, Uppm>  | 100       | 1+11                  | 0                                                  |
|                  | Kosufy farm             | 70        | 38+0                  | 51                                                 |
|                  | Ingvar (NSC)            | 31        | 0+18                  | 0                                                  |
|                  | Ingrid (SweGrid, HPC2N) | 100       | 2+98                  | 99                                                 |
|                  | SCFAB                   | 8         | 0+3                   | 0                                                  |
|                  | Ouark Cluster           | 7         | 1+8                   | 0                                                  |
|                  | Monolith (NSC)          | 394       | 0+298                 | 142                                                |
|                  | Seth (HPC2N)            | 198       | 0+134                 | 91                                                 |
|                  | Grendel                 | 15        | 4+3                   | 0                                                  |
| Switzerland      | HIP CH                  | 1         | 1+0                   | 0                                                  |
| TOTAL            | 24 clusters             | 1068      | 119 + 579             |                                                    |
|                  |                         |           |                       | Match-it-yoursel<br>Storage resources<br>User base |

- Shows currently connected resources
- Almost all elements "clickable"
  - browse queues and job states by cluster
  - list jobs belonging to a certain user
- No authentication, anyone can browse the info





## Using a Storage Element

- Storage Elements are disk servers accessible via the Grid
- Allows to store input files close to the cluster where the program is executed, on a high bandwith network
- Possibility to upload output files at a desired place:

```
(inputFiles=
  (''input1''. ''/home/user/myexperiment''
  (''input2'', ''gsiftp://se.somewhere.ee/files/commondata''))
(outputFiles=
  (''output'', ''gsiftp://se.somewhere.fi/mydir/result1'')
  (''prog.out'', ''gsiftp://se.somewhere.fi/mydir/stdout''))
(stdout=''prog.out'')
```





### xRSL Example Using a Storage Element

• xRSL file for the hellogrid example, uploading the job results to a storage element:

```
& (executable=hellogrid.sh)
(jobname=hellogrid-se)
(stdout=gsiftp://grid.tsl.uu.se/tutorial/hello.out)
(stderr=gsiftp://grid.tsl.uu.se/tutorial/hello.err)
(gmlog=gridlog)
(architecture=i686)
(cputime=10)
(memory=32)
(disk=1)
```





# Gsincftp

- Can be used to transfer files to and from storage elements
  - Based on the popular ncftp ftp client, but uses certificate based authentication instead of standard ftp authentication
- Example session:
  - \$ gsincftp grid.tsl.uu.se
    - ...Logged in to grid.tsl.uu.se.
  - \$ cd tutorial
  - \$ get hello.out
- Already deprecated by the Globus project, does not work with their newest GridFTP server
  - replacement: UberFTP (http://dims.ncsa.uiuc.edu/set/uberftp/)





### **Runtime Environments**

- Software packages which are preinstalled on a computing resource
  - Avoid the need of sending the binary at the start of executing a job
  - Allow local optimizations (e.g. compiling to the installed architecture using optimized compiler flags)
- Very useful if there are many users of the same software or if the same program is used frequently
- Required runtime environment(s) can be specified in the job description file (xRSL file), for example:

```
(runtimeenvironment=povray-3.5)
```





# **Real Jobs**

- Real jobs usually send several subjobs to the Grid to solve a larger problem
- Parallel MPI jobs to a single cluster supported (if correct runtime environment installed), but no MPI between clusters
- Splitting the job to suitable parts and gathering the parts together is left to the user
  - More error prone environment than traditional local systems => error checking and recovery important
  - Fault reporting and debugging has room for improvements
- Leif Nixon's example: Rendering an image in slices using the povray tool





# References

- NorduGrid website: <a href="http://www.nordugrid.org">http://www.nordugrid.org</a>
- The NorduGrid User Guide: http://www.nordugrid.org/documents/userguide.pdf
- Balazs Konya's presentation at the 4th International Workshop on Grid Computing: http://www.nordugrid.org/slides/20031117balazs.pdf
- Povray example by Leif Nixon: http://www.nsc.liu.se/~nixon/ng-povray/

# Thank you!