
NorduGrid Tutorial Exercises

Juha Lento <juha.lento@csc.fi>
Arto Teräs <arto.teras@csc.fi>

1st Nordic Grid Neighbourhood Conference
August 17, 2005

Contents

1 Introduction 2

2 Getting started 2

3 Getting information about the resources in NorduGrid 3

4 Logging in into the grid 3

5 Submitting a simple job 4

6 Simple file transfers 5

7 Statically linked executable 7

8 Dynamically linked executable 9

9 Using a Runtime Environment 10

10 Creating complex jobs 11

11 Submitting your own application 12

12 Acknowledgements 13

1

1 Introduction

This document contains examples and exercises for the NorduGrid ARC Middleware.

A printed copy of NorduGrid/ARC User Guide should be used on the side with this document.
It is usually provided in the tutorial sessions, but it is also available on the web athttp://www.
nordugrid.org/documents/userguide.pdf.

The Unix command prompt is represented with the dollar sign and text which should be entered by
the user is written in typewriter font as follows:

$ command

Please don’t feel restricted by the order of how examples andexercises are presented — explore, edit
the xRSL files, try out different commands and parameters andask questions.

2 Getting started

Basically, a user needs an Internet connection, a web browser, the NorduGrid/ARC User Guide, the
NorduGrid User Interface (UI) client software, and grid identity, i.e. user certificate. In tutorials client
software and temporary tutorial user certificates are usually pre-installed. If the client software is
installed from the standalone package the UI is initialized, i.e. the UI commands are added into user’s
$PATH, etc., by sourcing the setup script:

$ cd nordugrid-standalone-0.4.5
$ source setup.sh

If you are going through this excercise by yourself, you can find the instructions how to install client
software and obtain certificate from NorduGrid website and chapters 3 and 4 of the user guide. Be
prepared that obtaining the personal certificate may take a week.

The tutorial examples are available as a tar package. Download and uncompress them with:

$ wget http://staff.csc.fi/juha.lento/grid/tutorial-2005-08-17/
NGN2005_NorduGrid_Tutorial_examples.tar.gz

$ tar zxvf NGN2005_NorduGrid_Tutorial_examples.tar.gz

The examples are in directories

dynamic
hellogrid
povray
static
transfers

2

3 Getting information about the resources in NorduGrid

NorduGrid computing clusters and file servers publish information about their available resources
using LDAP servers. Contact information to these LDAP servers is collected into the Nordugrid
Information System. Although LDAP servers servers can be explored usingldapsearch command
line tool, it is much more convenient to access the information through NorduGrid Grid Monitor’s
web interfacehttp://www.nordugrid.org/. Click on the “Grid Monitor” link at the top of the
page. NorduGrid Information System does not require authentication, and all information in it is
public, so go ahead and see what’s going on!

The main view of the monitor shows currently connected computing resources. Most of the elements
are links, clicking on them opens a new window giving more information of that particular resource.
For example, click on a cluster name to view more informationabout that cluster, on the process bar
to view more information about jobs running on the cluster, etc. The main view also has small icons
to open windows to userbase, storage resources and general search tool. More detailed description of
the grid monitor is in the chapter 10 of the User Guide.

Exercises:

• What is the processor type in the Monolith cluster in Sweden?How much memory is installed
in the nodes?

• Which version of NorduGrid software and which runtime environments are installed in the
Aalborg cluster in Denmark?

• On which clusters is user “Aleksandr Konstantinov” authorized to run jobs?

• Which Storage Elements have more than a terabyte of free diskspace?

• Check information about your tutorial identity. Where are you authorized to submit jobs?

4 Logging in into the grid

User certificate is usually stored in directory$HOME/.globus in file usercert.pem and and the cor-
responding private key in fileuserkey.pem. You can view information about the certificate with
commandgrid-cert-info.

“Logging in” with

$ grid-proxy-init

creates a temporary access token called proxy, which is discussed in detail in the section 4.2.1 of the
user guide. Grid services can act on the behalf of the user only as long as the proxy is valid. Actually,
anybody holding the proxy can act as the user, which is why this single sign on and access rights
delegation scheme can be said to imply limited time insecurity.

Exercises:

• Print the certificate in text form by typinggrid-cert-info. What is your identity in the grid?
Who has signed the certificate?

3

• Logging in to the grid actually means creating a temporary access token called grid proxy.
See what the proxy file looks like. Print information of your proxy in clear text by typing
grid-proxy-info. How long is it valid?

• How do you extend the validity time of the proxy?

5 Submitting a simple job

Take a look at filehellogrid.sh. It is a simple shell script which writes “Hello Grid” on the standard
output and sleeps for a while before returning. You can try torun it locally by typing

$./hellogrid.sh

The job description file to submit this script to the grid ishellogrid.xrsl:

& (executable=hellogrid.sh)
(stdout=hello.out)
(stderr=hello.err)
(gmlog=gridlog)
(architecture=i686)
(cputime=10)
(memory=32)
(disk=1)

Try to submit the job to NorduGrid:

$ ngsub -d 1 -f hellogrid.xrsl

Commandngsub takes a while to complete as UI first contacts the root information server, asks for
clusters connected at the moment and then queries all the available clusters individually for their
attributes etc. Optional flag-d 1 in ngsub command let’s you view the progress of this procedure.

UI selects suitable host for the job based on the informationthat it gathered from the clusters. Then
it parses the xRSL job description and sends it to the selected cluster possibly along with the input
files that are stored locally in the UI client machine. When the job is submitted, you should receive a
message such as

Job submitted with jobid
gsiftp://benedict.aau.dk:2811/jobs/2837896291031006429

In this case, the job was submitted tobenedict.aau.dk in Denmark and the urlgsiftp://benedict.
aau.dk:2811/jobs/2837896291031006429 is the reference to the job. The last part is a session di-
rectory chosen randomly by the target system. It is possibleto check the status of the job using the
ngstat command:

4

$ ngstat gsiftp://benedict.aau.dk:2811/jobs/2837896291031006429
Job gsiftp://benedict.aau.dk:2811/jobs/2837896291031006429

Jobname: hellogrid
Status: FINISHED 2004-03-29 16:15:18

In this case the job has been successfully completed. Other stages that the job may be in are described
in the NorduGrid User Guide. Retrieve the results by typing

$ ngget gsiftp://benedict.aau.dk:2811/jobs/2837896291031006429

This downloads the result files and some statistics in the directory2837896291031006429. Take a
look at the output (filesstdout andstderr anddiag file in thegridlog directory. What can you
see?

Notice, that we made no reference to which cluster the job should go. If you would like to specify the
cluster (or exclude some), it can be described in the xRSL fileor on the command line:

$ ngsub -f hellogrid.xrsl -c kivi.csc.fi

Exercises:

• Submitting the job with commandngsub -d 1 -f hellogrid.xrsl shows information about
the submission process. What more info is available with-d 2?

• Specify a job name by adding line(jobname=hellogrid_your_name) to the filehellogrid.xrsl.
Submit the job again. Now you can refer to the job with the nameinstead of session name url
when usingngstat andngget commands.

• Submit some more jobs and try commandsngkill andngclean.

6 Simple file transfers

The set of excercises in this section demonstrates the use ofsimple file transfer tools in NorduGrid
ARC middleware. Here “simple” means point-to-point file transfers in which the file locations are
explicitly specified by the user. Simple file transfers can bemade using interactive tools, such as
gsincftp. File transfers can also be initiated from the client side byngsub or from the server side
by grid-manager as described in the job description. This section does not cover more advanced data
management and indexing services, such as Globus RLS, Globus Replica Catalog or EGEE/gLite
Fireman. Data management is discussed in User Guide’s chapter 9.

In the simplest case all the input files for a job are submittedfrom the local machine running user
client software along with the job description xRSL file, andthe results are downloaded from the
computing resource’s session directory to the local clientmachine by the user. The examples in the
previous section use this model.

The session directories are kept on the computing resourcesfor a limited time only, usually at least
for 24 hours. Client machines could be laptops etc., and are not necessarily connected to the grid
when the jobs finish, so the grid-manager does not transfer jobs directly back to the client machine.

5

ngsub

ngget

Grid Manager

Control dir
Local dir

Input files
xRSL

User User
Interface

results

xRSL & input

Gridftpd

Cluster FE

Session

directory

Figure 1: Simple file transfers initiated by UI and user.

Persistent storage areas (file servers) which are continuously connected to grid and can accept the
output of the jobs automatically are called storage elements (SE).

Storage elements can be accessed interactively. Let’s firstfind a SE, using Grid Monitor, in which our
tutorial identity is authorized. Add

(outputfiles =
("hello.out" "gsiftp://se1.ndgf.csc.fi/ndgf/tutorial/<dirname>/hello.out"))

to thehellogrid.xrsl file from the previous section. Open a connection to the SE andcreate a
directory<dirname> for yourself:

$ gsincftp gsiftp://se1.ndgf.csc.fi/ndgf/tutorial
$ mkdir <dirname>
$ quit

Now, when you submit thehellogrid.xrsl example the output filestdout.txt is automatically
moved to the specified destination by the grid-manager afterthe job has finished. If proxy has expired
before the job finishes, the file transfers from the computingelement to SE fail and the output files
stay on the computing element.

File permissions on SEs can be controlled by several schemes. Basically the question is about how to
map grid identities and permissions to local unix login accounts and file permissions. In this example
we discuss the Grid Access Control List (GACL) scheme. In theGACL scheme each file and directory
is accompanied by the GACL file describing the grid access permissions. You can view the content of
the GACL file with

$ ngacl get gsiftp://se1.ndgf.csc.fi/ndgf/tutorial/<dirname>/<filename>

Changing the permissions involves changing the GACL file. This can be done using ARC UI tool
ngacl.

There are a number of options controlling the file transfer itself, such as file caching and file encryp-
tion. Please refer to the section 7.1.1 in the User Guide.

Excercises:

6

re
su
lt
s

In
pu
t
fi
le
s

ngsub

Grid Manager

Control dir

User User
Interface

Gridftpd

Cluster FE

Session

directory

Gridftpd

Storage Element

Input files

xRSL

Local dir

xRSL

Figure 2: Simple file transfers initiated by UI and grid-manager.

• Also excecutables and other input files can be downloaded to the computing resource from
storage elements prior to the execution of the job. Movehellogrid.sh to a SE and add corre-
spondinginputfiles attribute to thehellogrid.xrsl file. Submit the job.

• Nothing in principle forbids one to install NorduGrid file server on the client machine, to make
it act as a private SE, which stores files with local user account permissions directly. It would
make a nice excercise, but it probably takes a bit more time than is available in usual tutorial
sessions.

• Try ARC UI command line toolsngls, ngremove (ngrm), ngcopy (ngcp) in place of
gsincftp.

• How do you find out what access control scheme a SE uses? Hint: Use the Grid Monitor Search
tool.

• Usually the SEs are configured so that only the creator of the file has any permissions on it.
Give a read access to the directory you created and to one of your files in the SE to someone
else in the tutorial session.

• Where did you find documentation about GACL? ;-)

7 Statically linked executable

This example demonstrates how to run a simple serial computation on the grid. The application is a
first-principles real-space electronic structure programcalculating the electronic structure of the CH4
molecule. Thanks to Tuomas Torsti for providing the example. In this case the (statically linked)

7

executable is submitted to the grid as one of the job input files and no reference to Runtime Environ-
ments (software packages installed on the target cluster) is required. Basically we request a single
i386 compatible PC.

Go to directory containing the material:

$ cd static
$ ls
CH4_LUCKY.xrsl INPUT potentials rspace-0.81_i386-linux_SERIAL

The job description is in the fileCH4_LUCKY.xrsl:

$ cat CH4_LUCKY.xrsl
&(executable=rspace-0.81_i386-linux_SERIAL)
(JobName=CH4_LUCKY)
(inputFiles=(INPUT "")

(potentials/C "")
(potentials/H ""))

(outputFiles=(energies "")
(forces "")
(WAVES_1 "")
(POTENTIAL ""))

(CpuTime=10)
(memory=64)
(disk=10)
(stdout=stdout.txt)
(stderr=stderr.txt)
(gmlog=debugdir)
(|(architecture=i386)

(architecture=i686))

First line defines the name of the executable. If it is not specified in the list of input files, it is
automatically appended there. Edit the job name fromCH4_LUCKY to CH4_LUCKY_YOUR_FIRST_NAME
so you can differentiate the instance submitted by you from the others in the tutorial more easily.

Read from the User Guide how the location of the input and output files is resolved. That can be tricky
with all the available locations...

Next some of the requirements for the job are specified, so that the user interface can select a suitable
platform (cluster).

Submit the job!

$ ngsub -f CH4_LUCKY.xrsl
INPUT->INPUT 1 s: 0 kB 0 kB/s 0 kB/s . . .
rspace-0.81_i386-linux_SERIAL->rspace-0.81_i386-linux_SERIAL 1 s: . . .
rspace-0.81_i386-linux_SERIAL->rspace-0.81_i386-linux_SERIAL 2 s: . . .
C->C 1 s: 0 kB 0 kB/s 0 kB/s . . .
C->C 2 s: 64 kB 31 kB/s 32 kB/s . . .
H->H 1 s: 0 kB 0 kB/s 0 kB/s . . .
Job submitted with jobid gsiftp://ingvar.nsc.liu.se:2811/jobs/7009965451436415513

8

Monitor the job withngstat and when it is finished, fetch the results withngget.

Excercises:

• Specify three alternative clusters as accepted targets in the CH4_LUCKY.xrsl file. Try submit-
ting the job. (Hint: Use the “cluster” attribute, see the User Guide for details.)

• Can you store a list of preferred/discarded clusters in a separate file and give that list tongsub?

• Add a “notify” attribute in the xRSL file to receive email notifications of job status changes.
See the User Guide for details.

• If one does not retrieve or clean finished jobs from computingresource, resourse cleans them
by itself after some time. However, UI “remembers” these jobs and when runningngstat -a,
it complains about jobs that are not found. UI’s list of sent jobs can be refreshed from the
Information System withngsync, which is useful also if one is moving from a machine to
another. Where does UI save the IDs of the submitted jobs?

8 Dynamically linked executable

In the previous example the executable was a statically linked binary. Running such binaries requires
that the job goes to machine with suitable architecture. If the executable is dynamically linked, a
successful execution of the job also requires that all the necessary libraries are available. This is can
be achieved in at least two ways. The first is to submit libraries and the linker (!) as input files – a case
which is quite close to submitting statically linked binary. The second option is to install libraries on
the computing resource and advertise them in the Information System using Runtime Environments.
This section demonstrates the use of the first approach.

Below is a wrapper script for a laminate structure optimization run

#!/bin/sh -v
#$ -cwd

export ELMER_HOME=.

tar -p -z -x -f unchangebles.tar.gz
./lib/ld-linux.so.3 --library-path "./lib" ./ElmerSolver

and the corresponding job description:

&(rsl_substitution = (SEDIR
"gsiftp://se1.ndgf.csc.fi/ndgf/tutorial/dynamic"))

(jobName = "elmer")
(executable = "wrapper.sh")
(inputfiles = (wrapper.sh "")

(laminate.opt "")
(Shell.sif "")

9

(unchangebles.tar.gz $(SEDIR)/unchangebles.tar.gz))
(executables = lib/ld-linux.so.3

lib/elements.def
ElmerSolver lib/ld-linux.so.3
lib/libc.so.6
lib/libcxa.so.3
lib/libg2c.so.0
lib/libSolver.so
Shell)

(outputfiles = (layup.opt "")
("/" ""))

(stdout = stdout.txt)
(stderr = stderr.txt)
(gmlog = logs)
(cache = yes)
(disk = 150)
(cpuTime = 3)
(|(architecture = i686)

(architecture = i386)
(architecture = x86_64))

This job description directs grid-manager to download a largish tar packageunchangebles.tar.gz
containing linux loader, executable, and the required libraries. Shell wrapper untars the package and
runs the executable with specified library path.

Excercises:

• One can monitor the progress of a job while it is running withngcat, which prints the standard
output of the job. Try it. Quite useful.

9 Using a Runtime Environment

Runtime Environments provide a means to make software packages installed at the systems available
on the Grid. Users can specify in the job description file thata specific runtime environment needs to
be present in the target system. That avoids the need to send the actual application binary as part of
the computation: only input files need to be sent.

The following tiny script and job description file can be usedto render an image using the Persistence
of Vision Raytracer (POV-Ray) tool.

File runpov.sh:

#! /bin/sh
povray $@

File povrayjob.xrsl:

10

&(executable=runpov.sh)
(arguments="-d -W640 -H480 skyvase.pov")
(stdout="pov.out")
(stderr="pov.err")
(gmlog="log")
(jobname="povray-skyvase")
(runtimeenvironment=ADD_A_SUITABLE_RE_HERE)
(cputime=10)
(inputfiles=(skyvase.pov ""))
(outputfiles=(skyvase.png ""))

Exercises:

• Take a look at the Runtime Environment Registry athttp://www.csc.fi/grid/rer/ and
find the most recent runtime environment to run POV-Ray jobs.Modify the job description file
accordingly and submit the job. You can also try different parameters for rendering.

• Which clusters have some version of the POVRAY runtime environment installed? Extend the
job description file so that also older versions of POV-Ray are accepted.

• Try rendering some of the other images and scenes in the povray subdirectory. Some of them
require more than one input file and are placed in separate directories.

10 Creating complex jobs

Real jobs normally send several subjobs to be executed on theGrid. One job shouldn’t be too long
to avoid losing a lot of time in case of job failure (besides, most sites have a maximum time limit in
the queue) but it shouldn’t be too short either to reduce the overhead resulting from submitting the job
and retrieving the results.

Depending on the type of problem, the user sometimes needs tosplit a large computation into smaller
parts and later combine the results, and sometimes group small computations into larger chunks. This
exercise presents both approaches.

The following script uses POV-Ray to render three images as one job.

#!/bin/sh
povray -d -ochair.png chair.pov
povray -d -odrink.png drink.pov
povray -d -oegg.png egg.pov

Exercises:

• Write a job description file to run the job. Submit it and retrieve the results.

• Look at the execution time in the log files. Was the lenght of the job suitable to be efficiently
executed in the Grid?

11

The following job description file and wrapper script uses POV-Ray to render a five frame animation.
The parameter-kff specifies the number of frames, parameter-ki specifies clock value for the initial
frame of the animation and parameter-kf specifies the clock value for the final frame of the animation.

File fractalzoom_part1.sh:

#!/bin/sh
povray -d -kff5 -ki0.00 -kf0.08 -ofractalzoom_part1_frame fractalzoom.pov
tar czvf fractalzoom_part1_frames.tar.gz fractalzoom_part1_frame*.png

File fractalzoom_part1.xrsl:

&(executable=fractalzoom_part1.sh)
(stdout="fractalzoom.out")
(stderr="fractalzoom.err")
(gmlog="log")
(jobname="povray-fractalzoom")
(|(runtimeenvironment=APPS/GRAPH/POVRAY-3.6)

(runtimeenvironment=POVRAY-3.5))
(cputime=10)
(inputfiles=(fractalzoom_part1.sh "")

(fractalzoom.pov ""))
(outputfiles=(fractalzoom_part1_frames.tar.gz ""))

Exercises:

• Try to submit the job and see what kind of result files are produced. Among other files there
should be a tar package containing five images. Watch the result as an animation by extracting
all the images in the same directory running the commandanimate -delay 50 *.png.

• Write additional jobs and description files for rendering subsequents parts of the animation for
time periods 0.10 - 0.18, 0.20 - 0.28, 0.30 - 0.38 and 0.40 - 0.48. Change the filename format
specified by-o option in the wrapper script slightly to produce different filenames in each run.

• Multiple jobs can be described in single job description fileand submitted with one ngsub
command. This saves some time because then ngsub goes through the list of available hosts
only once. Combine the five xRSL files of the previous excercise into one xRSL file and submit
the job again.

To see a bit more complicated wrapper script to split a POV-Ray scene to several parts, submit them
in the grid and automatically fetch and combine the results,look at Leif Nixon’s example athttp:
//www.nsc.liu.se/~nixon/ng-povray/.

11 Submitting your own application

You can also try your own application to NorduGrid. It is easiest if you have a statically linked
executable (compiled for Linux x86 platform) which does notrequire any software to be installed
beforehand in the target cluster. Write a job description file and submit the job, monitor the progress
and fetch the results.

12

12 Acknowledgements

The POV-Ray scenes in the examples package include images created by Gilles Tran, available under
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/).

13

