ofs
- * SGS11: Swiss Grid School 2011
SwWiNGW

SWISS NATIONAL
IIIIIIIIIIIIIII

ARC for developers:
Implementing High-Throughput Computing
solutions on the Grid

Sergio Maffioletti
Grid Computing Competence Center GC3
University of Zurich
sergio.maffioletti@gc3.uzh.ch

Why development is needed ?

« Most of the current scientific research is dealing with very
large number of data to analyze

« This s not just parameter sweep usecase, but in general
Hight Throughput Computing (HTC)

« [0o0ls are needed to efficiently address both computing and
data handling issues

« Single operation client tools are not always adequate to
cope with the high throughput requirements of even a single
experiment

Ya¥al +tArl nA + + | hAainild ha A
e UEAaICatel ena-1o-enda wois snouiag ne

end-user requirements (no general solutlo

SwWiNGW

Why development is needed ?

« ARC provides API interfaces that could be used to address
the computing and data handling part of any end-to-end
solution that aim to leverage grid capabilities

« ARCI1 provides a revised APl model centered around plugins
(it provides plugings for ARCO, ARC1 and CreamCE
compute elements for example)

What is the added value instead of my beloved
bash/perl scripts ?

« Using the API allows to directly control and use the data structures
ARC provides

. like a list of computing resources — ExecutionTargets -, or
easily create several JobDescription(s) from a template

» Itallows to directly manipulate these data structures and/or
Integrate them in a control driver script

. for example, it is very easy to obtain a list of Job objects each
of them representing a submitted job)

. It allows to have a finer grained control on such data structure
 like optimized bulk submission minimizing the Idapsearches
on remote ends

It allows to implement own allocation and resubmission strategies

SwWiNGW

A typical high-throughput use case?

« Run a generic Application on a range of different inputs;
where each input is a different file (or a set of files).

« Then collect output files and post-process them, e.qg.,
gather some statistics.

« Typically implemented by a set of sh or Perl scripts to
drive execution on a local cluster.

SwWiNGW

A programming example

From a folder containing 20 .inp input files
Search for the one that has a particular pattern
Each file will be a job submitted

Driver script should handle:

1. All preparatory steps (create one JobDescription per input
file)

. Bulk submission
. Global control on all submitted jobs

~Fr A

. FKCDUIL et ICVdI

. Check which job found the pattern

w N

(@2 BN SN

SwWiNGW

Basic ARC libraries data structures

1. User configuration

2. Resource discovery and Information retrieval
3. Job submission

4. Job Management

SwWiNGW

Resource Discovery and Information Retrieval

« The new libarcclient resource discovery and information
retrieval component consists of three classes; the
TargetGenerator, the TargetRetriever and the
ExecutionTarget.

« largetRetriever is a base class for further grid middleware
specic specialization (plugin)

SwWiNGW

Resource Discovery and Information Retrieval

ClusterSelect IndexURLs ClusterReject
.| [
TargetGenerator N
AliasResolve
1b
URL1
GetTangets f 3
A ™ |TargetRetrieverARC1
Querylndex
6
Interrogate

Index Servers Found Services Found Targets

SwiNGW

TargetGenerator

. The TargetGenerator class is the umbrella class for resource
discovery and information retrieval (index servers and
execution services).

« The TargetGenerator loads TargetRetriever plugins (which
Implements the actual information retrieval) from URL
objects found in the UserConfig object

arc. Get Tar get Generator(_usercfg, 0)

SwWiNGW

10

RetrieveExecutionTargets(self)
GetExecutionTargets(self)

Retrieve available execution services.

The endpoints specified in the UserConfig object passed to this
object will be used to retrieve information about execution
services (ExecutionTarget objects).

The discovery and information retrieval of targets is carried out
In parallel threads to speed up the process. If a endpoint is a
Index service each execution service registered will be queried.

List of Execution targets can be accessed by invoking

Get Exeeut i onTar get s()
SwWiNGW

11

Job Submission

Job submission starts with the resource discovery and target

preparation,

Only when a list of possible targets is availab
description is read and brokering method is a
ExecutionTargets according to the JobDescri
requirements.

e the job
oplied to rank the
ption's

Note: this allows to submit bulk of jobs without having to re-

perform the resource discovery.

SwWiNGW

12

Job Submission

SWiNGW2

TargetGen erator

s F

I__

Tl

Computing Cluster

Broker

/

JobDescription

Sorted Targets

6

| |
-

Local InputFiles

SubmitterARC1

13

Job Submission

« The TargetGenerator has prepared a list of
ExecutionTargets.

« In order to rank the found services (ExecutionTargets) the
Broker needs detailled knowledge about the job
requirements, thus the JobDescription Is passed as input to
the brokering process.

Broker. PreFi |l terTargets([ExecutionTargets],
JobDescri ption)

£ 0
et)

Rr nkar (ot Ract Tan
L U 1 Ao UL LIV O L Iugb

nNo .

SwWiNGW

14

Job Submission

Target.Submit(arc.UserConfig, JobDescription, arc.Job)

Returns True/False and modifies arc.Job object

SwWiNGW

15

Job Management

« Once a job Is submitted, job related information (job
identication string, cluster etc.) is stored in a local XML
(default: SHOME/.arc/jobs.xml).

« This file may contain jobs running on completely different
grid flavours, and thus job management should be handled
using plugins similar to resource discovery and job
submission.

=
-
S
@
-
<.
o
o
-
Q
S
Q =
<
o
o

16

Job Management

Jobs
ClusterSelect

Cluster Reject

JobControllers
ARCO ARC1 CREAM
‘-.
3
JubSupers'sur /
1 B JobStore JobStore
. o

\

<?xmlversion"L0"?>
=lohs=
</jobs>

/]
N/

void arckill(const std::list<std::string>& jobs,
const std::list<std::string=& clusterselect,
const std::list<std::string>& clusterreject) {

joblist.xml

SwWiNGW

Job Management

] obsupervi sor = arc.JobSupervisor(_usercfg, [])
] obsupervi sor. Get JobControl |l ers()

joblist fileis extensively used by the JobSupervisor to identify the
JobController flavours which are to be loaded.

Jobs can then be managed through respective JobControllers

SwWiNGW

18

sgs2011 arc_htc.py

1nmport User configuration paraneters
_usercfg = arc. UserConfig("", "")
_usercfg. C ear Sel ectedServi ces()

fixed values for the purpose of the
exerci se

arc_version = ' ARCD'
host _endpoint = '"alo.grid.zoo" # ARC CE
host nanme

add conputing service
SwiNcﬂEer cfg. AddServices(["%: %" %

19

sgs2011 arc_htc.py

_target _generator = arc. Target Generator(_usercfg,

this call spawns renore researches
_target _generator.RetrieveExecutionTargets()

targets = target _generator. Get ExecutionTargets()

0)

SwWiNGW

20

sgs2011 arc_htc.py

jd = arc. JobDescri ption()
j d. Appl i cati on. Execut abl e. Name = "/ bi n/ grep"
["-1", “sgs2011”,

j d. Appl i cation. Execut abl e. argunent s
“ITnputfile”]

j d. Application. Qutput = "sgs2011. out"

jd. Application. Error = "sgs2011.err"

jd. Application.LogDir = ".arc"

] d. Resources. Sl ot Requi renment . NunberO Sl ots. max = 1
] d. Resour ces. | ndi vi dual Physi cal Menory. max = 100

j d. Resources. Total WAl | Ti ne. range. nrax = 60

SwWiNGW

sgs2011 arc_htc.py

jdlist =[]

iterate over input folder and create one
j obdescription per file

for filenane 1n os.listdir(input folder):

xrsl = xrsl _tenplate + "(InputFiles=("inputfile’
'))" %
0S. pat h. abspat h(os. path.joi n(input _folder,filenane)) +
"(jobname="%"')" %fil enane

jd = arc. JobDescription()

| f not arc.JobDescription. Parse(jd, xrsl,
j obdescl ang) :

- | og.error("Failed creating JobDescription
SwWiNGgkrLs ' %' " % xrsl)

22

sgs20

ld =

11 arc_htc.py

ar c. Broker Loader ()

broker = | d. | oad("Randoni, _usercfq)
j = arc.Job()

for

SwWiNGW

jdin jd. list:
broker. PreFi|lterTargets(targets, |d)

target = broker. Get Best Target ()
| f not target:

continue # no target found for this
JobDescri pti on

submtted = target. Subm t(_usercfg,
| f submtted:

job list[j.JoblID. str()] =]

J d,

J)

23

sgs2011 arc_htc.py

_] obsupervisor = arc.JobSupervisor(_usercfg, [])
_controllers = _jobsupervisor. GetJobControll ers()

for c in controllers:
c. Get Jobl nformati on()
joblist = c. GetJobs()

Note, joblist is a list of arc.Job object
for job in joblist:

Check and nmani pul ate 1 ndi vi dual i obs
rJuI AL W 1 1 1Al Vi A Al \J N J

“ J

SwWiNGW

24

sgs2011 arc_htc.py

downl oad _dir = os. path.join(os.getcwd(), | ob. Nanme)

downl oad file list =
control |l er. Get Downl oadFi | es(j ob. Jobl D)

source _url = arc.URL(]job.JoblID.str())
destination url = arc. URL(downl oad _dir)

for renote file in download file |ist:

control |l er. ARCCopyFi | e(source_url,destination _url):

SWiNGWE _

EXxisting projects

o Atlas control tower
« Ganga

« GC3Pie [2

« Created at the University of Zurich's Grid Computing Competency
Center (GC3) http://www.gc3.uzh.ch/

. Open-source, hosted at http://gc3pie.googlecode.com
gc3pie@googlegroups.com

SwWiNGW

26

SwWiNGW

SGS11: Swiss Grid School 2011

ARC for sysadmins.
The tutorial

Sergio Maffioletti UZH/GC3
Marko Nikkimaki HES-SO
Sigve Haug UniBe/LHEP

27

SwWiNGW

SGS11: Swiss Grid School 2011

ARC for sysadmins.
the tutorial

Sergio Maffioletti UZH/GC3
Marko Nikkimaki HES-SO
Sigve Haug UniBe/LHEP

28

SwWiNGW

SGS11: Swiss Grid School 2011

Inside ARC:
Client tools

Sergio Maffioletti
Grid Computing Competence Center GC3
University of Zurich
sergio.maffioletti @gc3.uzh.ch

29

Computing service

o

Inderming > %

rrvica—— -
\“‘“} L\

LDAP
Server

LDAP r
INIORs query
Job submission &

i
]
]
maragamani 1
]
]
]

Compute
Node

1
]
|
|
|
|
| P —
|
|
|
|

Joz submission &
m I]rlﬂgEf“Eﬂr

\ {. Sassion Dirqclm_’}

Slage i & s sy

1
Fa
- to stdowt!stdarr . ! -
1 ! e
1 -
% -
1 .
. stage in & ,.r-': o
stoge out LIS: Lowal nformeaiion Services

Picture taken from “ARC meet SWiNG”” workshop 2008

« Computing resources: Grid-enabled via ARC layer on head node (front-end):
e Custom GridFTP server for all the communications
e Grid Manager handles job management upon client request, interfaces to LRMS
e Performs most data movement (stage in and out), cache management
e Publishes resource and job information via LDAP

o
= inds— SGS2011, Sep 05—-09, 2011. Karlsruhe
SwiNGEE™

30

Lightweight User Interface with the built-in Resource Broker

A set of command line utilities
Minimal and simple

Under the hood: resource discovery, matchmaking, optimization,
job submission

Complete support for single job management
Basic functionality for multiple job management
Built upon ARCLIB

Standalone binary client package possible to be installed in user
space

SwWiNGW

31

1. Obtain access to a User Interface (ARC client software)
2. Request a user certificate from a Certification Authority
3. Deploy the signed certificate on the User Interface

4. Create grid proxy

5. Write a job description

6. Submit job

7. Monitor the progress of the job

8. Fetch the results

SwWiNGW

32

SwWiNGW

arcproxy — handle grid/voms proxy creation
arcsub — find suitable resources and submit a job
arcstat — check the status of jobs and resources
arccat — display stdout, stderr of a running job
arcget — retrieve the results of a finished job

arckill — stop a job

arcclean — delete a job from a computing resource
arcsync — find user’s jobs

arcls — list files on a stora

arccp — transfer files to and from cluster and storages

33

o Create proxy: arcproxy

* Writing a job descrption: job.xrsl

e Submitting the job: arcsub

e Checking the status: arcstat/arccat

* Retrieving the result files: arcget

SwWiNGW

34

 Required to submit jobs to ARC
e Could be downloaded from http://ftp/nordugrid.org/download
e Various binary packages as well as source code

« Standalone package vailable for installing ARC client in user
space

e Binaries available for system-wide installation

yuminstall nordugrid-arc-client

SwWiNGW

35

The default behaviour of an ARC client can be con
gured by specifying alternative values for some
parameters in the client con

guration
le. The

le is called client.conf and is located in directory .arc

INn user's home area:
$HOVE/ . arc/client. conf

SwWiNGW

36

 Resource Specification Language (RSL) files are used to
specify job requirements and parameters for submission

 ARC uses an extended language (XRSL) based on the Globus RSL

e Similar to scripts for local queuing systems, but includes some
additional attributes

e Job name
« Executable location and parameters
* Runtime Environment requirements

SwWiNGW

37

e hell oWbrl d. sh

#!/ bi n/ sh
echo “Hell o Worl d”

e hell oWbrl d. xr sl

& (execut abl e=hel | oWor | d. sh)
(j obnane=hel | ogri d)
(st dout =st d. out)
(stderr=std.err)

(gm og=gri dl og)

- faY e Yaly

(cputi ne=10)
(menory=32)

SwWiNGW

38

Submit the job

arcsub -d DEBUG -c ARCO: ai 0.grid.zoo —f helloWrld. xrsl

=> Job submtted with jobid
gsiftp://aio.grid.zoo:2811/jobs/455611239779372141331307

* Query the status of the submitted job

arcstat hellogrid

Job gsiftp://aio.grid.zoo: 2811/ obs/ 455611239779372141331307
Jobnane: hellogrid
Status: | NLRMs: Q

e Most common status values are: ACCEPTED, PREPARING,

SUBMITTING, INLRMS:Q, INLRMS:R, EXECUTED, FINISHED

SwWiNGW

39

* Print the job output

arccat hellogrid

« Shows the standard output of the job
» This can be done also during job execution

e Fetch the results
arcget hellogrid

arcget: downloading files to
[hone/ t heuser/resul ts/ 455611239779372141331307

arcget: downl oad successful - deleting job from
gat ekeeper.

SwWiNGW

40

SwWiNGW

Inside ARC:
Runtime Environments

Sergio Maffioletti
Grid Computing Competence Center GC3
University of Zurich
sergio.maffioletti @gc3.uzh.ch

41

e Software packages which are pre-installed on a computing resource and
made available through ARC

* Avoid the need of sending the binaries together with the job
« Allows local platform specific optimization

* Provides to the users a common environment for the specific application

 Implemented by shell scripts which initialize the environment and are
placed in specific directory

 Required RTE can be specified in the job description file:
(runtimeenvironment=APPS/LIFE/TANDEM-09.08)

* Every infrastructure should provide a registry for the supported RTEs and
the conventions followed

SwWiNGW

42

Deployment and RTE: APPS/LIFE/TANDEM-09.08

export TANDEM LOCATION=S$application base path
Export TANDEM_TAXONOMY=$TANDEM_LOCATION/bin

Set the specific mdrun commands for this system.
export TANDEMRUN=""$TANDEM LOCATION/bin/tandem.exe”

SwWiNGW

43

In xrsl job description file

(runtimeenvironment="APPS/LIFE/TANDEM-09.08")

Within job execution

$TANDEMRUN 1nput.xml

SwWiNGW

44

SwWiNGW

Inside ARC:
Sysadmin tips

Sergio Maffioletti
Grid Computing Competence Center GC3
University of Zurich
sergio.maffioletti @gc3.uzh.ch

45

Installation of ARC packages:

 For most rpm-based Linux distributions, RPMs for ARC and for
most of its dependencies are provide through nordugrid
repository

« Possible to install via apt or yum
yuminstall nordugrid-arc-conpute-el enent

* Provided deb packages

SwWiNGW

46

« ARC can be see as made of four main service type:
« ARC_CE: interface with the computing farm

« ARC UI: client interface

« ARC_SE: interface with the storage farm

« ARC _GIIS: top level information system

 Each of them can be installed either separately or altogether on
the same node

« RPMs are provided for ARC server and ARC client
 ARC server includes components for CE,SE,GIIS

o System administrator decides which service configure and
enable through configuration files

SwWiNGW

47

SwWiNGW

Given a computing farm controlled and managed by a Local Resource
Management System (LRMS)

ARC_CE is the interface to the LRMS
ARC _CE needs to be an authorized client of the LRMS

ARC_CE needs to share at least one filesystem with the rest of the
computing farm

Submission to the LRMS is done by ARC_CE on behalf of the users

ARC_CE checks the status of the LRMS jobs and retrieves the results
on behalf of the user

Results form the LRMS submission are stored on ARC_CE for manual
retrieval or transfer to a storage resource

48

Nordugrid Client

+ roesdutd Sandal ene-aayran
?.WE:I;"Q.QH; - ?."/,_--—-..%\
P ELHEAT
"m""rr.-,,
/”"" Single Site

Nordugrid Server

2811 Grid Manager —
LAMS seived
(GridFTP _
GLOBUS_TCP_PORT_RANGE
130000 -32000) % LRIS Client _E
2135 GRIS —__

Shared Grid
Working Directory

Nerdugrid-s
Firewall setti

SwiNGW

49

Resource selection

« ARC_Ul embodies a resource broker that is responsible of selecting
the resources to match the requirements of a submitting job

* Broker first queries the GIIS it knows to get a list of sites

 Then queries the sites to check whether the user is authorized to the
site

 Then filters the resources according to the ARC_job’s resource
specifications

 Then ranks the filtered resources according to its policy (random,
fastest cpus, ...)

 The top rank resource is selected
« Submission to selected resource

SwWiNGW

50

SwWiNGW

An ARC job is submitted from ARC_UI
On ARC CE, the Gridftp server accept the request

Authentication and authorization (GSI,VOMS)
* Request is mapped to local user account

An ARC joblD is created (this will be the unique reference for the job)

A session folder is created within $sessiondir (as specified in arc.conf)
named as the ARC joblID

Downloader process is started to fetch input data
Input data are stored in ARC job’s session dir

submit-SLRMS-job script is started to translate ARC job into a local
submission

» There are several LRMS backend: PBS, S

op)
0,

SE, LSF, Condor,...

B B g

51

Translated job is submitted to LRMS using local user account
Lifecycle of LRMS job is supervised by grid-manager
* |t executes scripts like: scan-$LRMS-job

* Information system updates information on the status of the job
(INLRMS:R means submitted to LRMS and running there)

e Once LRMS job is terminated, uploader process takes care of
staging results to a designated storage resource (if specified in
Xrsl)

« ARC job status is reported as FINISHED

SwWiNGW

52

e Location of log files can be specified in arc.conf

* Each service has its own section where individual log can be
configured (location, rotation policy, verbosity level)

SwWiNGW

53

default configuration:

log location: /var/log/arc/gridftpd.log

control: /etc/init.d/gridftpd [start, status, stop]
daemon: gridftpd

Open port on: 2811 (default)

FTP PASS mode: 9000 — 9500 (default)

SwWiNGW

54

default configuration:

log location: /var/log/arc/grid-manager.log

control: /etc/init.d/a-rex [start, status, stop]

daemon: arched

open port on: 443 (when Web Service Interface activated)

handles $controldir (/var/spool/nordugrid/jobstatus)

uses several perl and bash scripts located in /usr/shar/arc
submit-$LRMS-job, scan-$LRMS-job, ...

il B

SwWiNGW

55

default configuration:

log location:
/var/log/arc/infoprovider.log
/var/log/arc/inforegistration.log
/var/log/arc/bdii/bdii-update.log
/var/log/bdii/bdii.log

control: /etc/init.d/grid-infosys [start, status, stop]

Daemons: slapd, Idapadd, bdii-fw

open port: 2135
Ldif files: var/run/arc /var/run/bdii

SwWiNGW

56

SwWiNGW

57

ARC for sysadmins.
The tutorial

SwWiNGW

58

